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INVESTIGATING THE DIAGNOSTICS ALGORITHMS OF THE THERMAL EFFECT 

IN DESIGN 

O. M. Alifanov and I. E. Balashova UDC 536.24 

We examine the iteration solution algorithms of inverse heat-conduction prob- 
lems (IHCP) with consideration of some a priori information regarding the 
sought relationship. 

In recent times, the derivation of the characteristics applicable to heat-exchange pro- 
cesses based on the methodology of inverse problems has gained increasing applicability, both 
in the processing of experimental results, as well as in the construction of mathematical 
models of real processes. This has stimulated further development of solution algorithms 
for inverse heat-exchange problems and more extensive investigation of their properties from 
the standpoint of practical application. 

Let us formulate some inverse problems in the form 

Au=[, u~U, [CF, (1) 

where A: U ~ F is a nonlinear operator in the general sense; U and F are Hilbert spaces. We 
know from physical considerations that u, as a rule, is a smooth function. Therefore, for 
U we make use of the Sobolev space W2 k. The function f, since it is a result of measurements, 
is generally known with some error and represents a rather arbitrary relationship f6" Natu- 
rally in this case the space L 2 must be examined from the standpoint of F. 

The operator that is the reciprocal of A is usually bounded, i.e., the formulated prob- 
lem is incorrect and for its solution we must make use of regularizing algorithms. In the 
following, for this purpose, we employ a method based on iteration regularization. Research 
has shown [i] that excellent effectiveness is achieved by IHCP solution algorithms based on 
a scheme from the method of conjugate gradients, where the iteration number k is taken as 
the regularization parameter 

uh+l  = uh -- ~h Ph, k = 0, 1 . . . . .  K* ,  ( 2 )  

w here  t h e  d i r e c t i o n  o f  d e s c e n t  

ph+x = J S k  (u~,+,) + ~ + ~  p~, 

(J~-k (u,,+,), J ~ h  (u,,) - -  Jt~q~ (uh+,))w? y o = O ;  ~'~41=-- 
II Jt~,h (uk)[l~,k 

(3) 
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K* is the number of the following iteration, which is chosen according to some law which pro- 
vides for the regularization of the method (for example, the disparity rule [i]); J'wzk(u) 

is the gradient of the functional J(u) = ilAu - f611L22 in the space W2 k. The descent interval 
in this case is determined from the condition 

~k : :  argmin J (uk - -  ~p~ ), ~ > O. (4 )  

At the present time the IHCP solution algorithms have found widespread application, and 
here the iteration sequence (2) is constructed in the space of the functions L 2 without making 
use of available information regarding the unique features of the reproducibility of u. A 
more exact solution for the incorrect IHCP can be attained by means of algorithms which make 
possible consideration of similar a priori information, in particular, data regarding the 
smoothness of the sought function, as well as its quantitative characteristics and individual 
points within the determination region. A number of papers [1-7] has been devoted to the 
development of such algorithms. 

In the following we examine a means of providing for the a priori information offered 
in [8, 9]. The iteration sequence (2) is constructed in the space of the functions wzk. In 
this case, the gradient of the functional J'w2k in this space is determined on the spaces 

of known values of the gradient J'L2, corresponding to the space L 2 by means of solution of 
the boundary-value problem 

k 

d" fr r b) 
. : o  dx" \ " dx" ] =  

(5) 

When the sought relationship is found among the functions belonging to the space W2 I, 
differential equation (5) will be most simple: 

r o J$~ (x) - -  (r, (Jw~ (x))x)x = Ji, (x), x 6 (0, b). (6 )  

The b o u n d a r y  c o n d i t i o n s  depend  on t h e  t y p e  o f  i n f o r m a t i o n  r e g a r d i n g  t h e  s o u g h t  f u n c t i o n  
t h a t  i s  g i v e n .  I t  i s  n a t u r a l  t h a t  t h e  i n i t i a l  a p p r o x i m a t i o n  u 0 ( x )  must  be a f u n c t i o n  o f  c o r -  
r e s p o n d i n g  s m o o t h n e s s  and must  a g r e e  w i t h  t h e  b o u n d a r y  c o n d i t i o n s  c h o s e n .  

We examine  t h r e e  w i d e l y  e n c o u n t e r e d  c a s e s  o f  g i v e n  v a l u e s  f o r  t h e  d e r i v a t i v e s  o r  f o r  
t h e  a c t u a l  f u n c t i o n s  t h e m s e l v e s  a t  t h e  b o u n d a r i e s  0 and b. The s o l u t i o n  t o  Eq. ( 5 ) ,  w i t h  
t h e  c o r r e s p o n d i n g  b o u n d a r y  c o n d i t i o n s ,  can  be a c h i e v e d  a n a l y t i c a l l y  by means o f  t h e  method 
o f  t h e  G r e e n ' s  f u n c t i o n .  

I f  we use  t h e  i n f o r m a t i o n  r e g a r d i n g  t h e  v a l u e s  o f  t h e  d e r i v a t i v e s  o f  t h e  s o u g h t  f u n c t i o n  
Ux(0)  = a l  and u x ( b )  = a 2, we must  assume t h e  f o l l o w i n g  b o u n d a r y  c o n d i t i o n s  

( s ~  (x))x Ix=0 b = 0 ( 7 )  

and t a k e  t h e  f u n c t i o n  u 0 ( x )  as  t h e  i n i t i a l  a p p r o x i m a t i o n ,  c o n t a i n i n g  t h e  c o r r e s p o n d i n g  d e r i v -  
a t i v e s  a t  t h e  b o u n d a r i e s  o f  t h e  r e g i o n .  The c o r r e s p o n d i n g  s o l u t i o n  t o  p r o b l e m  ( 6 ) - ( 7 )  i s  
o b t a i n e d  in  t h e  fo rm 

I x 

J ~  (x) = c ch (Rx) - -  Rr---'-~ [ J~' (~) sh [R (x - -  ~)] x$ ( 8 ) 
0 

where 

b 

c = (2 Rrl sh (Rb))-l~ J~, (~) ch [R (b - -  DI d~; (9 )  
0 

R = Yrolq .  

When Ux(X) lx= o = a l ,  u ( b )  = q2 i s  g i v e n ,  t h e  i n i t i a l  a p p r o x i m a t i o n  u 0 ( x )  mus t  be c h a r a c -  
t e r i z e d  by these same parameters at the points x = 0, b, and the boundary conditions become 
as f o l l o w s :  
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( ]w~) x Ix=0 = 0; : # g  (x)l x=b = 0" ( 10 ) 

I n  t h i s  c a s e ,  t h e  s o l u t i o n  t o  p r o b l e m  ( 5 ) - ( 1 0 )  h a s  t h e  f o r m  o f  ( 8 )  w i t h  t h e  c o n s t a n t  

b 

c = ( 2 R q  ch (Rb)) -~ J' J L  (~) sh [R (b - -  ~)] d~. ( i i )  
0 

Finally, if we have information regarding the values of the functions at the boundaries of 
the region u(O) = ql and u(b) = q2, then we can use the linear relationship u0(x) as the ini- 
tial approximation and this linear function is characterized by these same parameters. The 
boundary conditions for Eq. (6) assume the form 

J # ~ ( ~ l . = o , b  : O, ( 1 2 )  

while the solution is given by the formula 

1 x 

[ J i ,  (~) sh [R (x - -  ~)1 d~, J ~  (x) = c sh ( R x ) -  
Rrl (13) 

where 

b 

c = ( 2 R r  1 sh (Rb))  - !  S J i ,  (~) sh [R (b - -  ~)1 d~. ( 1 4 )  
0 

With a solution in space W2 2 we have a fourth-order differential equation 

( 1 5 )  

with boundary conditions 

r i  (Jw~ ) x - -  (1"1 (Jw~) xx) x Ix=0. b = 0; (16) 

The solution of 
has real values when 

r= (dg~)  = Ix=o, b = O. ( 1 7 )  

problem (15)-(17), together with the method of the Green's function, 
the coefficients r0, rl, and r 2 satisfy the condition 

and is 

where 

2 
DI = rl -- 4to r= > 0, 

written in the form 

Jg~ (x) = c, ~ + ca e -Ax + ca e Bx + c~ e -B* + S (x), 

(is) 

(19) 

A = -VD+12r2 ; B = "VDT/2r2  ; D • = r 1 4 -  - V - ~ l ;  

x 

S (x) = [r2 (B = - -  A2)]-*S J L  (~) [B -~ sh B (x - -  ~) - -  A-* sh A (x - -  ~)1 d~. 
0 I 

(20) 

The coefficients contained in expression (19) are calculated through solution of the 
following system of equations: 

cl A ( 1 - -  A ~) - -  c~ A ( 1 - -  A s) + ca B ( 1 - -  B 2) - -  ca B ( 1 - -  B 2) =. 0; 

c i A ( 1 - -  A 2) e M - -  c2 A ( 1 - -  A 2) e --bA -3 F C 3 B ( 1 - -  B z) e bB - -  ca B ( 1 - -  

- -  B z) e--bB _ p;  

c iA ~ +  c2A 2 + caB 2 +  caB 2 = 0; 

ci A ~ ebA .A[_ E2 A 2 e--bA ._~ Ca B ~ ebb + c~ B z e -bB  = - -  Q, 

(2i) 
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where 

qs 

J '-i\. 
q5 I,o 

Fig. i. Determination of the functions q($) (i) for the orig- 
inal data perturbed in accordance with the normal law (30 = 
0.i Tma x) by means of the solution algorithms in the spaces 
W2 z (2), W22 (3), L 2 (4) for 0.012 ~ AFo ~ 0.038. 

0 o 

A X 

i 
qs I,o 

b ~' 

�9 1 

Fig. 2. Determination of the functions q($) (i) on the unper- 
turbed initial data by means of the solution algorithms in the 
spaces L 2 (2), W2 z (3), W22 (4) for 0.012 ~ AFo ~ 0.038. 

b 

P ---- [r,  (B 2 - -  AZ)l-Z ~ J i ,  (~) [(1 - -  B 2) c h  B (b - -  ~) - -  ( 1 - -  A 2) c h  A (b - -  ~)1 d~; 
0 (22) 

b 

Q ---- [r~ (B 2 - -  A~)] -~ S J i ,  (~) [B sh  B (b - -  ~) - -  A sh A (b - -  ~)] d ~. 
0 

(23) 

It should be noted that the cited formulas for the calculation of the gradients of the 
functional in spaces W2 z and W22 on the basis of the gradient found in space L 2 can be uti- 
lized to solve the various inverse problems. Later on we will deal with the solution of a 
specific problem, and namely the nonlinear boundary IHCP of determining the density of the 
heat flux as a function of time u(x) = q(~) at one of the surfaces of an unbounded plate on 
the basis of the data at one or more points, with consideration of the above-considered a 
priori information. The gradient of the functional in the space L 2 in this case is deter- 
mined by the method presented in [2]. 

The investigation carried out by means of calculation experiments for unperturbed and 
perturbed initial data and various thermophysical characteristics of materials enabled us 
to carry out a comparison of the results obtained in the spaces W22, W2 z, and L 2 in deter- 
mining the functions q(~) of various forms, as well as to ascertain the conditions for the 
selection of the approximate solution in the case in which the magnitude of the error in the 
initial information is unknown. 

The derived results indicated that the solution algorithms in spaces W22 and W= z, with 
consideration given to the information regarding smoothness, exhibit smoothing properties 
and are more stable with regard to errors in temperature. Unlike the solution algorithm in 
space L 2, which is characterized by lower viscosity, as the number of iterations in these 
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increases there is no development of oscillations, but rather only some "waviness" occurs, 
a consequence of the measurement errors (Fig. i), i.e., they exhibit a rather markedly ex- 
pressed property of self-regularization. In practical applications it proved to be possible 
to use the proximity condition of the iteration approximations to reduce the number of cal- 
culations: 

l-I/J--~"~ - -  -I/7~+m ~ s ;  (24) 

I ]/~-- ]/J~+~ f < ~. (25) 

With the solution in space L2, condition (24) makes it possible to achieve excellent 
approximation for the case in which the parameter AFo e i. This parameter takes into con- 
sideration the thermal depth to which the thermocouples are positioned, as well as the time- 
discretization interval AT. In the nonlinear case, it is calculated in accordance with the 
formula 

A Fo = rain [~ (T) A ~ /~  (T) dD]. 
r (26) 

When AFo < i, the selection of the approximate solution in space L 2 can be found on the 
basis of the proximity condition for the functional with respect to the value of the errors 
in the initial temperature data [I] (Fig. ib) 

]/J-~ ~ ~r (27)  

or, if the error S T is unknown, it can be found through additional measurements or on the 
basis of the increment of the functional [I0]. 

If the initial approximation q0(~) is chosen arbitrarily, then in the solution Of the 
IHCP in space L 2 it ~s not always possible to obtain a reliable result, even with exact ini- 
tial data (Fig. 2b). At the same time, the algorithms that we considered above and which 
make use of information regarding the smoothness enable us to obtain a rather close approxi- 
mation of the sought function. 

As an example, Fig. 2 shows the results from the determinations of two different func- 
tions for the case of unperturbed initial data. In both cases, we have taken the value of 
q0 = 0 as the initial data. The cited results show that together with the solution algorithm 
in space L= it is the function q(T), shown in Fig. 2a, that is determined more accurately, 
whereas in the determination of the second function (Fig. 2b) the result differs significant- 
ly from the exact value. 

The solution algorithms in spaces W21 and W22, with consideration of the smoothness of 
the sought results, based on the boundary-value problems (6)-(7) and (15)-(17), yielded satis- 
factory approximate relationships both for the exact and the perturbed initial data for both 
of the functions q(~) under examination. And here, the more exact solutions are found in 
the function space W22 (see Figs. 1 and 2). 

NOTATION 

u = u(x), sought function; (')x, first derivative with respect to the argument; (')xx, 
second derivative with respect to the argument; Ux, derivative with respect to x; E, positive 
small number; X(T) and c(T), specific heat capacity and volumetric heat capacity of the ma- 
terial; d, coordinate for the sensor installation, whose measurements are used in the solu- 
tion of the IHCP; ST, error in temperature measurements. 
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A UNIVERSAL ALGORITHM FOR THE SOLUTION OF PROBLEMS INVOLVING 

THE MATHEMATICAL MODELING OF THE THERMAL REGIME 

IN A STRUCTURE, IN ONE-DIMENSIONAL APPROXIMATION 

V. S. Khokhulin UDC 536.24.02 

We examine a universal solution algorithm for problems related to the mathemati- 
cal modeling of the heat regime in structures in one-dimensional approximation, 
synthesizing the possibilities and advantages of the solution algorithms of 
these problems, as determined from graphs of general form and a graph in the 
form of a tree. 

The method of mathematical modeling of the thermal regime in structures in one-dimensional 
approximation [1-3] has recently found widespread application with regard to problems of ther- 
mal designs in various heat-engineering systems and devices. The thermal model of a structure 
in this case is represented in the form of a graph, on N of whose arms are given the equations 
of heat conduction modeling the thermal state in distributed structural elements, with the 
heat-balance equation for concentrated elements in combination with conditions of thermal 
stress given at the N V apices (at Nein internal apices of the graph) or by the boundary con- 

ditions (at N~b boundary apices). We will identify the boundary apices of the graph as those 

apices with which only a single arm is associated. The inside apices will include all those 
with which a minimum of two arms are connected. 

As a rule, the system of nonsteady nonuniform one-dimensi0nal heat-conduction equations 
with which we are dealing here, as a result of the finite-difference approximation of the 
differential operators, reduces to a system of algebraic equations, determfned on the graph 
of the thermal model for the solution of which various modifications of the parametric sweep- 
ing method [2] is used, or where use is made of a generalized algorithm [3], utilizing a cyc- 
lical sweeping method. These methods exhibit excellent convergence and stability and are 
suitable for thermal models whose graphs are arbitrary in form (see Fig. la), i.e., it con- 
tains cycles, loops, etc. The application of these methods requires a considerable number 
of arithmetic operations and, consequently, considerable computer capacity. 

The original graph can frequently be represented as some combination (total) of simpler 
interconnected graphs. This makes it possible to break down the graph in the following man- 
ner. Let us assume that N b boundary graphs are contained within the original graph; these 
boundary graphs simulate the characteristics of a tree (or bush), and there is also a root 
graph of general form (i.e., with loops and cycles) to link all of the separate graphs into 
a graph representing the thermal model of the structure. In this case, the root apices of 
the boundary graphs are the inside apices of the root graph. If we were to include the sim- 
plest tree-shaped graphs consisting of a single arm and two terminal apices in the number 
of boundary graphs, all of the apices of the root graph would be inside graphs in terms of 
the earlier-introduced definition. 

The ~ apices of the graph under consideration have been determined on the set V = 

=Vr~-~Vp. The total number of N V apices in the original graph consists of the Ner apices 
p=I 
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